

Provably Total NP Search Problems

Arnold Beckmann

Department of Computer Science
Faculty of Science and Engineering
Swansea University
Wales, UK

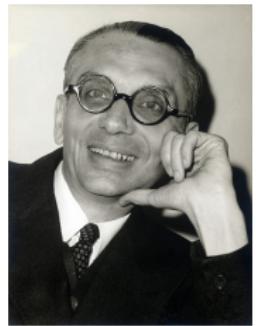
World Logic Day 2026
Swansea, 14 January 2026

- 1 The Heritage
- 2 Bounded Arithmetic
- 3 Total NP Search Problems
- 4 Total NP Search Problems of Bounded Arithmetic
- 5 Total NP Search Problems of Peano Arithmetic
- 6 Conclusion

The Heritage

A. Turing (1912-1954)

G. Peano (1858-1932)



K. Gödel (1906-1978)

G. Gentzen (1909-1945)

Peano Arithmetic (PA)

- domain: \mathbb{N}
- language: $0, 1, +, \cdot, \leq$
- axioms: defining equations

schema of full induction for all formulas:

$$A(0) \wedge \forall x(A(x) \rightarrow A(x+1)) \rightarrow \forall x A(x)$$

Gödel's 2nd Incompleteness Theorem: $\text{PA} \not\vdash \text{Con}_{\text{PA}}$

Gentzen's Consistency Proof: $\text{PA} + \text{TI}(\epsilon_0) \vdash \text{Con}_{\text{PA}}$

Fragments of PA

- Laurie Kirby and Jeff Paris end of 70's:
 $I\Sigma_n$, that is, induction restricted to Σ_n formulas

$$\exists x_1 \forall x_2 \dots Q x_n \underbrace{\varphi(x_1, \dots, x_n)}_{\text{bounded quantifiers}}$$

- Charles Parsons beginning of 70's:
provable recursive functions of $I\Sigma_1$ = *prim. rec. functions.*
- Wainer, Ono & Kadota 70's & '80:
provable recursive functions of PA = *ϵ_0 -rec. functions.*

1 The Heritage

2 Bounded Arithmetic

3 Total NP Search Problems

4 Total NP Search Problems of Bounded Arithmetic

5 Total NP Search Problems of Peano Arithmetic

6 Conclusion

Bounded Arithmetic

Cook 1975:

equational theory PV

Buss 1985:

aligned to PA

Zambella 1997, Cook-Nguyen 2010:

language with sorts for strings and indices

The Language of Bounded Arithmetic

- similar to PA
- domain: \mathbb{N}
- language: $0, 1, +, \cdot, \leq$ plus $|.|, \#, \dots$
 - $|x| =$ binary length of x
 - $x\#y = 2^{|x|\cdot|y|}$ polynomial growth rate
- bounded formulas:

$$\Sigma_1^b : \exists x_1 \leq s_1 \forall y \leq |t| A(x_1, y)$$

$$NP = \Sigma_1^p$$

$$\Sigma_2^b : \exists x_1 \leq s_1 \forall x_2 \leq s_2 \exists y \leq |t| A(x_1, x_2, y)$$

$$NP^{NP} = \Sigma_2^p$$

⋮

s_1, s_2, t terms, A quantifier-free

Theories of Bounded Arithmetic

BASIC = set of open formulas defining non-logical symbols

Induction:

$$\Sigma_i^b\text{-Ind} : \varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \forall x\varphi(x)$$

$$\Sigma_i^b\text{-LInd} : \varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \forall x\varphi(|x|)$$

where $\varphi \in \Sigma_i^b$

Theories:

$$S_2^1 = \text{BASIC} + \Sigma_1^b\text{-LInd} \quad T_2^1 = \text{BASIC} + \Sigma_1^b\text{-Ind}$$

$$S_2^2 = \text{BASIC} + \Sigma_2^b\text{-LInd} \quad T_2^2 = \text{BASIC} + \Sigma_2^b\text{-Ind}$$

⋮

$$S_2 = \bigcup_i S_2^i \quad T_2 = \bigcup_i T_2^i$$

Definable Functions

Definition

f Σ_1^b -definable function in S_2^1 iff exists Σ_1^b -formula φ s.t.

- φ defines graph of f over \mathbb{N} , i.e. $f(x) = y \iff \mathbb{N} \models \varphi(x, y)$
- $S_2^1 \vdash \forall x \exists y \leq t(x) \varphi(x, y)$ for some term t
- $S_2^1 \vdash \forall x, y, y' (\varphi(x, y) \wedge \varphi(x, y') \rightarrow y = y')$

Theorem (Buss '85)

Σ_1^b -definable functions in S_2^1 = p -time functions FP

Other Characterisations

Theories	Induction	Graph Definability	Computational Complexity
S_2^1	Σ_1^b -LInd	Σ_1^b	FP
S_2^2	Σ_2^b -LInd	Σ_2^b	FP^{NP}
S_2^{k+1}	Σ_{k+1}^b -LInd	Σ_{k+1}^b	$FP^{\Sigma_k^p}$
U_2^1	$\Sigma_1^{1,b}$ -LInd	$\Sigma_1^{1,b}$	FPSPACE
V_2^1	$\Sigma_1^{1,b}$ -Ind	$\Sigma_1^{1,b}$	FEXPTIME

Results

Theorem (Buss'85, Buss'90)

$$S_2^1 \subseteq T_2^1 \preceq_{\forall\Sigma_2^b} S_2^2 \subseteq T_2^2 \preceq_{\forall\Sigma_3^b} S_2^3 \dots$$

Main Open Problem

Is the hierarchy of theories strict?

Further Results

Independence Results [Krajíček, Pudlák, Takeuti '91, Krajíček'93, Jeřábek '09]

Separation of polynomial time hierarchy PH implies separation of BA theories.

Theorem [Buss '95, Zambella '96, Jeřábek '09]

Collapse of BA theories is equivalent to collapse of PH provable in BA

Propositional Proof Complexity [Cook, Reckhow '79]

Deep connections to propositional proof complexity.

- 1 The Heritage
- 2 Bounded Arithmetic
- 3 Total NP Search Problems
- 4 Total NP Search Problems of Bounded Arithmetic
- 5 Total NP Search Problems of Peano Arithmetic
- 6 Conclusion

Total NP Search Problems (TFNP)

Definition (Megiddo-Papadimitriou '91; Papadimitriou '94)

A *Total NP Search Problem* (TFNP, for *total functional NP*) is a polynomial time computable (ptime), binary relation R , such that

- R is *honest*, i.e. polynomially bounded:
If $R(x, y)$ then $|y| \leq p(|x|)$ for some polynomial p .
- R is *total*: For all x , there exists y s.t. $R(x, y)$.

The *search task* is:

Given input x , find a y s.t. $R(x, y)$.

TFNP intermediate between P and NP

Theorem

If $\text{TFNP} \subseteq \text{FP}$, then $\text{NP} \cap \text{coNP} = \text{P}$.

Theorem

If $\text{P} = \text{NP}$, then $\text{TFNP} \subseteq \text{FP}$.

Search Complexity Classes in TFNP

Papadimitriou et.al. identified several natural sub-classes of TFNP.

defining principles: combinatorial lemma guaranteeing totality

PPA *every graph has an even number of odd-degree nodes*

PPP *there is no injective map from $[x]$ to $[x-1]$*

PLS *every directed acyclic graph has a sink*

...

In this talk: **totality guaranteed by mathematical theories like Bounded Arithmetic or Peano Arithmetic.**

Provable Total NP Search Problems

Let $\text{TFNP}(\mathcal{T})$ be *set of provably total NP search problems in \mathcal{T}* .

Consider

$$\begin{aligned} \text{FP} &= \text{TFNP}(\text{S}_2^1) \subseteq \text{TFNP}(\text{T}_2^1) \subseteq \text{TFNP}(\text{T}_2^2) \subseteq \dots \subseteq \text{TFNP}(\text{BA}) \\ &\subseteq \text{TFNP}(\text{I}\Sigma_1) \subseteq \dots \subseteq \text{TFNP}(\text{PA}) \subseteq \text{TFNP}(\text{ZFC}) \end{aligned}$$

Is this hierarchy strict? Anywhere? (Implies $\text{P} \neq \text{NP}!$)

- 1 The Heritage
- 2 Bounded Arithmetic
- 3 Total NP Search Problems
- 4 Total NP Search Problems of Bounded Arithmetic
- 5 Total NP Search Problems of Peano Arithmetic
- 6 Conclusion

Π_k^b -Polynomial Local Search

Π_k^b -Polynomial Local Search

On input x :

F set of feasible solutions

with polynomial bound d

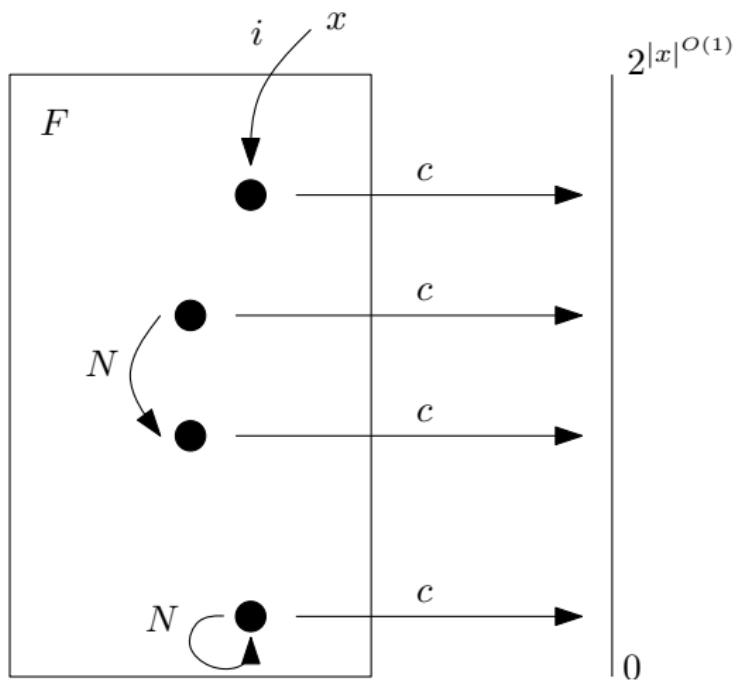
i initial value

N neighbourhood function

c cost function

Search task: Find $s \in F(x)$ with $N(x, s) = s$.

N, i, c ptime, $F \in \Pi_k^b$



A Π_k^p -PLS problem ($k > 0$) on instance x consists of,

- set of feasible solutions $F(x)$,
- neighbourhood function $N(x, s)$,
- cost function $c(x, s)$,
- initial feasible solution $i(x)$,

such that N, c, i polynomial time, F in Π_k^p , and

$$(\forall x, s)(s \in F(x) \rightarrow |s| \leq d(|x|)) \quad (1)$$

$$(\forall x)(i(x) \in F(x)) \quad (2)$$

$$(\forall x, s)(s \in F(x) \rightarrow N(x, s) \in F(x)) \quad (3)$$

$$(\forall x, s)(s \in F(x) \wedge N(x, s) \neq s \rightarrow c(x, N(x, s)) < c(x, s)) \quad (4)$$

Search task: find some s with $N(x, s) = s$.

Remark: Π_0^p -PLS, i.e. F ptime, is the same as PLS.

Theorem (Buss, Krajíček'95)

The provably total NP search problems in T_2^1 are exactly characterised by Polynomial Local Search (PLS)

Proposition

Let $L = (F, N, c, i)$ be a Π_k^b -PLS problem. Then $(\forall x)(\exists s)(N(x, s) = s)$ is a provably total NP search problem in T_2^{k+1} .

Proof.

Idea: Consider $\{d: (\exists s)(c(x, s) = d \wedge s \in F(x)\} (\in \Sigma_{k+1}^b)$.

Provable in T_2^{k+1} , we can determine minimum of this set. Choose some $s \in F(x)$ of minimal cost, this will satisfies $N(x, s) = s$. □

Theorem (B., Buss '09/'10)

Let $0 < k$. The provably total NP search problems in T_2^{k+1} are exactly characterised by Π_k^b -PLS problems.

Other characterisations

CPLS

a version PLS similar to Π_1^b -PLS

Theorem (Kołodziejczyk, Skelly, Thapen '07)

$\text{TFNP}(\text{T}_2^2)$ characterised by CPLS

k -turn Game Induction Principle, GI_k

k -turn two player games based on induction

Theorem (Skelly, Thapen '11)

$\text{TFNP}(\text{T}_2^k)$ characterised by GI_k

Local Improvement Principles

Definition (k-round Local Improvement Principle LI_k)

Labels on a directed acyclic graph on $[x]$ can be updated in a consistent, well-founded way for k rounds.

LI (no subscript) allows $k = \infty$ (exponentially) many rounds

LLI – graph is a line

RLI – graph is a rectangle

Theory Many-One Complete

T_2^k	LI_k	[KNT'11]
V_2^1	LI	[KNT'11]
V_2^1	LI_{\log} , LI with $O(\log n)$ many rounds	[BB'14]
U_2^1	LLI , Linear LI	[BB'14]
U_2^1	LLI_{\log}	[KNT'11]
V_2^1	RLI , Rectangular LI	[KNT'11]
V_2^1	RLI_{\log}	[BB'14]
U_2^1	RLI_1	[BB'14]

- 1 The Heritage
- 2 Bounded Arithmetic
- 3 Total NP Search Problems
- 4 Total NP Search Problems of Bounded Arithmetic
- 5 Total NP Search Problems of Peano Arithmetic
- 6 Conclusion

Provably Total NP Search Problems of Peano Arithmetic

\prec -bounded Local Search

\prec a ptime well-ordering.

S set of possible solutions

S need not be polynomially bounded!

i initial value

N neighbourhood function

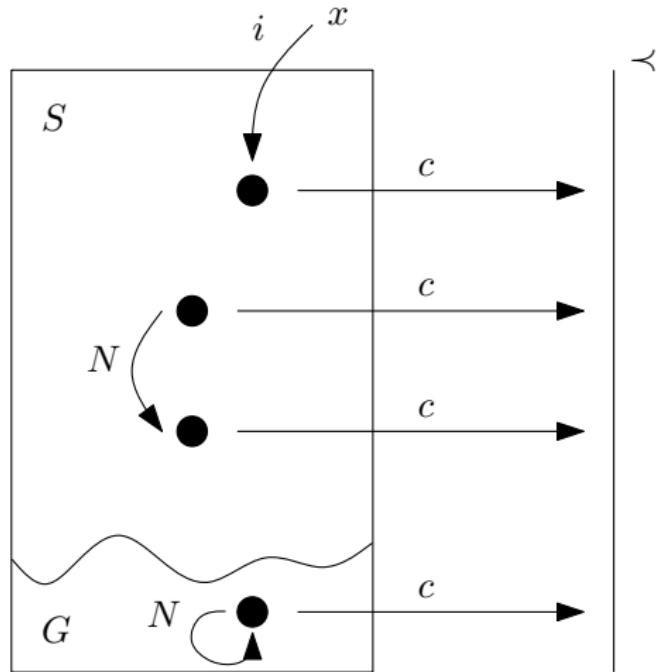
c cost function

$$N(x, s) = s \vee c(N(x, s)) \prec c(s)$$

$$N(x, s) = s \Rightarrow |s| \leq d(|x|)$$

Search task:

Find s with $N(x, s) = s$.



A \prec -*bounded local search* (\prec -bls) problem on input x consists of a set $S(x)$ of possible solutions, a polynomial bound d , a neighbourhood function $\lambda s. N(x, s) : S(x) \rightarrow S(x)$, a cost function $\lambda s. c(x, s) : S(x) \rightarrow \mathbb{N}$, a function computing an initial solution $i(x)$, such that \prec, S, N, c, i are ptime, and

$$\prec \text{ is a total order} \tag{5}$$

$$(\forall x)(i(x) \in S(x)) \tag{6}$$

$$(\forall x, s)(s \in S(x) \rightarrow N(x, s) \in S(x)) \tag{7}$$

$$(\forall x, s)(N(x, s) = s \vee c(x, N(x, s)) \prec c(x, s)) \tag{8}$$

$$(\forall x, s)(N(x, s) = s \rightarrow |s| \leq d(|x|)) \tag{9}$$

Search task: find some s with $N(x, s) = s$.

Properties of \prec -bls Problems

Fact

Any \prec -bls problem defines a total NP search problem.

Remark

PLS = \prec -bls with polynomially bounded set of possible solutions.

Definition (Formalised \prec -bls Problems)

A \prec -bls problem is *formalised* provided the predicates S and \prec are given by Δ_1^b -formulas, and the functions i, N, c are Σ_1^b -definable, such that the \prec -bls conditions are **provable in S_2^1** .

Theorem (B.'09)

The provably total NP search problems in PA are characterised by formalised α -bls problems, for $\alpha \prec_{\epsilon_0} \epsilon_0$.

Proof Idea

Notation for cut-elimination based on Mintz' continuous cut-elimination

Grigori E. Mints. Finite investigations of transfinite derivations.
Journal of Soviet Mathematics, 10:548–596, 1978.

Wilfried Buchholz. Notation systems for infinitary derivations.
Archive for Math. Logic, 30:277–296, 1991.

Klaus Aehlig and AB. On the computational complexity of cut-reduction. *APAL*, 161: 711–736, 2010.

A **Notation System** for (infinitary) propositional logic is a set \mathcal{D} with functions

- for last inference, derived formula, and cut-rank
- $d[j]$: a *notation* of jth sub-derivation of (derivation denoted by) d
- $o(d)$: height of derivation tree (denoted by) d .

AB, S.R.Buss, and C.Pollett. Ordinal Notations and Well-Orderings in Bounded Arithmetic. *APAL*, 120:197–223, 2003.

- 1 The Heritage
- 2 Bounded Arithmetic
- 3 Total NP Search Problems
- 4 Total NP Search Problems of Bounded Arithmetic
- 5 Total NP Search Problems of Peano Arithmetic
- 6 Conclusion

Further results

TFNP, propositional proof complexity, circuit complexity

- [Göös et.al. '22]
Relate simulation between propositional proof systems to characterisations of TFNP classes, using this for separations of TFNP classes (relative to an oracle)
- [de Rezende, Göös, Robere '22; Buss, Fleming, Impagliazzo '23]
TFNP as an organizing principle for connections between propositional proof systems and models of boolean circuits
- [Hubáček, Khaniki, Thapen '24]
Connections between intersection classes in TFNP and proof properties (feasible disjunction property)

Open Questions / Future Work

- Turn TFNP characterisations into propositional tautologies and show lower bounds in related propositional proof systems for them.
- Separate T_2^2 from T_2^3 with $\forall\Sigma_1^b$ sentences (relativised)
- Analyse $\text{TFNP}(T)$ for other theories.

Conjecture: All theories which admit a good ordinal analysis also admit a characterisation of their provably total NP search problems, similar to PA.

Thanks!