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The Heritage

G. Peano (1858-1932)

K. Gödel (1906-1978)

G. Gentzen (1909-1945)

A. Turing (1912-1954)
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Peano Arithmetic (PA)

domain: N
language: 0, 1, +, ·, ⩽
axioms: defining equations

schema of full induction for all formulas:

A(0) ∧ ∀x(A(x) → A(x+ 1)) → ∀xA(x)

Gödel’s 2nd Incompleteness Theorem: PA ⊬ ConPA

Gentzen’s Consistency Proof: PA+TI(ϵ0) ⊢ ConPA
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Fragments of PA

Laurie Kriby and Jeff Paris end of 70’s:
IΣn, that is, induction restricted to Σn formulas

∃x1∀x2 . . . Qxn φ(x1, . . . , xn)︸ ︷︷ ︸
bounded quantifiers

Charles Parsons beginning of 70’s:
provable recursive functions of IΣ1 = prim. rec. functions.

Wainer, Ono & Kadota 70’s & ’80:
provable recursive functions of PA = <ϵ0-rec. functions.
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Bounded Arithmetic

Cook 1975:
equational theory PV

Buss 1985:
aligned to PA

Zambella 1997, Cook-Nguyen 2010:
language with sorts for strings and indices
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The Language of Bounded Arithmetic

similar to PA

domain: N
language: 0, 1, +, ·, ⩽ plus |.|, #, . . .

|x| = binary length of x
x#y = 2|x|·|y| polynomial growth rate

bounded formulas:

Σb
1 : ∃x1⩽s1 ∀y⩽|t| A(x1, y) NP= Σ

p
1

Σb
2 : ∃x1⩽s1 ∀x2⩽s2 ∃y⩽|t| A(x1, x2, y) NPNP = Σ

p
2... s1, s2, t terms, A quantifier-free
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Theories of Bounded Arithmetic

BASIC = set of open formulas defining non-logical symbols

Induction:
Σb
i -Ind : φ(0) ∧ ∀x(φ(x) → φ(x+ 1)) → ∀xφ(x)

Σb
i -LInd : φ(0) ∧ ∀x(φ(x) → φ(x+ 1)) → ∀xφ(|x|)

where φ ∈ Σb
i

Theories:
S12 = BASIC + Σb

1-LInd T1
2 = BASIC + Σb

1-Ind
S22 = BASIC + Σb

2-LInd T2
2 = BASIC + Σb

2-Ind...
...

S2 =
⋃

i Si2 T2 =
⋃

i Ti
2
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Definable Functions

Definition
f Σb

1-definable function in S12 iff exists Σb
1-formula φ s.t.

φ defines graph of f over N, i.e. f(x) = y ⇐⇒ N ⊨ φ(x, y)

S12 ⊢ ∀x ∃y ⩽ t(x) φ(x, y) for some term t

S12 ⊢ ∀x, y, y ′ (φ(x, y)∧φ(x, y ′) → y = y ′)

Theorem (Buss ’85)
Σb
1-definable functions in S12 = p-time functions FP
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Other Characterisations

Theories Induction Graph Computational
Definability Complexity

S12 Σb
1-LInd Σb

1 FP

S22 Σb
2-LInd Σb

2 FPNP

Sk+1
2 Σb

k+1-LInd Σb
k+1 FPΣ

p
k

U1
2 Σ1,b

1 -LInd Σ1,b
1 FPSPACE

V1
2 Σ1,b

1 -Ind Σ1,b
1 FEXPTIME
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Results

Theorem (Buss’85, Buss’90)

S12 ⊆ T1
2 ⪯∀Σb

2
S22 ⊆ T2

2 ⪯∀Σb
3

S32 . . .

Main Open Problem
Is the hierarchy of theories strict?
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Further Results

Independence Results [Krajíček, Pudlák, Takeuti ’91, Krajíček’93,
Jeřábek ’09]

Separation of polynomial time hierarchy PH implies separation of BA
theories.

Theorem [Buss ’95, Zambella ’96, Jeřábek ’09]

Collapse of BA theories is equivalent to collapse of PH provable in BA

Propositional Proof Complexity [Cook, Reckhow ’79]

Deep connections to propositional proof complexity.
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Total NP Search Problems (TFNP)

Definition (Meggido-Papadimitriou ’91; Papadimitriou ’94)
A Total NP Search Problem (TFNP, for total functional NP) is a
polynomial time computable (ptime), binary relation R, such that

R is honest, i.e. polynomially bounded:
If R(x, y) then |y| ⩽ p(|x|) for some polynomial p.

R is total: For all x, there exists y s.t. R(x, y).

The search task is:
Given input x, find a y s.t. R(x, y).
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TFNP intermediate between P and NP

Theorem
If TFNP ⊆ FP, then NP ∩ coNP = P.

Theorem
If P = NP, then TFNP ⊆ FP.
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Search Complexity Classes in TFNP

Papadimitriou et.al. identified several natural sub-classes of TFNP.

defining principles: combinatorial lemma guaranteeing totality

PPA every graph has an even number of odd-degree nodes
PPP there is no injective map from [x] to [x−1]

PLS every directed acyclic graph has a sink
. . .

In this talk: totality guaranteed by mathematical theories like
Bounded Arithmetic or Peano Arithmetic.
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Provable Total NP Search Problems

Let TFNP(T) be set of provably total NP search problems in T .

Consider

FP = TFNP(S12) ⊆ TFNP(T1
2) ⊆ TFNP(T2

2) ⊆ · · · ⊆ TFNP(BA)

⊆ TFNP(IΣ1) ⊆ · · · ⊆ TFNP(PA) ⊆ TFNP(ZFC)

Is this hierarchy strict? Anywhere? (Implies P ̸= NP!)
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Πb
k-Polynomial Local Search
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Πb
k-Polynomial Local Search

On input x:
F set of feasible solutions
with polynomial bound d

i initial value
N neighbourhood function
c cost function

Search task: Find s ∈ F(x)

with N(x, s) = s.

N, i, c ptime, F ∈ Πb
k

F

N

N

i

c

c

c

c

2|x|
O(1)

x

0
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A Π
p
k-PLS problem (k > 0) on instance x consists of,
set of feasible solutions F(x),
neighbourhood function N(x, s),
cost function c(x, s),
initial feasible solution i(x),

such that N, c, i polynomial time, F in Π
p
k, and

(∀x, s)(s ∈ F(x) → |s| ⩽ d(|x|)) (1)
(∀x)(i(x) ∈ F(x)) (2)

(∀x, s)(s ∈ F(x) → N(x, s) ∈ F(x)) (3)
(∀x, s)(s ∈ F(x)∧N(x, s) ̸= s → c(x,N(x, s)) < c(x, s)) (4)

Search task: find some s with N(x, s) = s.

Remark: Π
p
0 -PLS, i.e. F ptime, is the same as PLS.
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Theorem (Buss, Krajíček’95)
The provably total NP search problems in T1

2 are exactly characterised
by Polynomial Local Search (PLS)

Proposition
Let L = (F,N, c, i) be a Πb

k-PLS problem. Then (∀x)(∃s)(N(x, s) = s) is a
provably total NP search problem in Tk+1

2 .

Proof.
Idea: Consider {d : (∃s)(c(x, s) = d∧ s ∈ F(x)} (∈ Σb

k+1).
Provable in Tk+1

2 , we can determine minimum of this set. Choose some
s ∈ F(x) of minimal cost, this will satisfies N(x, s) = s.

Theorem (B., Buss ’09/’10)

Let 0 < k. The provably total NP search problems in Tk+1
2 are exactly

characterised by Πb
k-PLS problems.
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Other characterisations

CPLS
a version PLS similar to Πb

1-PLS

Theorem (Kołodziejczyk, Skelly, Thapen ’07)
TFNP(T2

2) characterised by CPLS

k-turn Game Induction Principle, GIk
k-turn two player games based on induction

Theorem (Skelly, Thapen ’11)
TFNP(Tk

2) characterised by GIk
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Local Improvement Principles
Definition (k-round Local Improvement Principle LIk)
Labels on a directed acyclic graph on [x] can be updated in a
consistent, well-founded way for k rounds.

LI (no subscript) allows k = x (exponentially) many rounds
LLI – graph is a line RLI – graph is a rectangle

Theory Many-One Complete
Tk

2 LIk [KNT’11]
V1

2 LI [KNT’11]
V1

2 LIlog, LI with O(logn) may rounds [BB’14]
U1

2 LLI, Linear LI [BB’14]
U1

2 LLIlog [KNT’11]
V1

2 RLI, Rectangular LI [KNT’11]
V1

2 RLIlog [BB’14]
U1

2 RLI1 [BB’14]
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Provably Total NP Search
Problems of Peano Arithmetic
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≺-bounded Local Search

≺ a ptime well-ordering.

S set of possible solutions
S need not be polynomially
bounded!
i initial value
N neighbourhood function
c cost function

N(x, s) = s ∨ c(N(x, s)) ≺ c(s)

N(x, s) = s ⇒ |s| ⩽ d(|x|)

Search task:
Find s with N(x, s) = s.

S

N

N

i

c

c

c

c

≺

G

x
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A ≺-bounded local search (≺-bls) problem on input x consists of a set
S(x) of possible solutions, a polynomial bound d, a neighbourhood
function λs.N(x, s) : S(x) → S(x), a cost function λs.c(x, s) : S(x) → N, a
function computing an initial solution i(x),
such that ≺, S,N, c, i are ptime, and

≺ is a total order (5)
(∀x)(i(x) ∈ S(x)) (6)

(∀x, s)(s ∈ S(x) → N(x, s) ∈ S(x)) (7)
(∀x, s)(N(x, s) = s ∨ c(x,N(x, s)) ≺ c(x, s)) (8)
(∀x, s)(N(x, s) = s → |s| ⩽ d(|x|)) (9)

Search task: find some s with N(x, s) = s.
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Properties of ≺-bls Problems
Fact
Any ≺-bls problem defines a total NP search problem.

Remark
PLS = <-bls with polynomially bounded set of possible solutions.

Definition (Formalised ≺-bls Problems)
A ≺-bls problem is formalised provided the predicates S and ≺ are
given by ∆b

1-formulas, and the functions i, N, c are Σb
1-definable, such

that the ≺-bls conditions are provable in S12.

Theorem (B.’09)
The provably total NP search problems in PA are characterised by
formalised α-bls problems, for α ≺ϵ0

ϵ0.
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Proof Idea
Notation for cut-elimination based on Mintz’ continuous
cut-elimination

Grigori E. Mints. Finite investigations of transfinite derivations.
Journal of Soviet Mathematics, 10:548–596, 1978.

Wilfried Buchholz. Notation systems for infinitary derivations.
Archive for Math. Logic, 30:277–296, 1991.

Klaus Aehlig and AB. On the computational complexity of
cut-reduction. APAL, 161: 711–736, 2010.

A Notation System for (infinitary) propositional logic is a set D with
functions

for last inference, derived formula, and cut-rank
d[j]: a notation of jth sub-derivation of (derivation denoted by) d

o(d): height of derivation tree (denoted by) d.

AB, S.R.Buss, and C.Pollett. Ordinal Notations and
Well-Orderings in Bounded Arithmetic. APAL, 120:197–223, 2003.
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Further results

TFNP, propositional proof complexity, circuit complexity

[Göös et.al. ’22]
Relate simulation between propositional proof systems to
characterisations of TFNP classes, using this for separations of
TFNP classes (relative to an oracle)

[de Rezende, Göös, Robere ’22; Buss, Fleming, Impagliazzo ’23]
TFNP as an organizing principle for connections between
propositional proof systems and models of boolean circuits

[Hubáček, Khaniki, Thapen ’24]
Connections between intersection classes in TFNP and proof
properties (feasible disjunction property)
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Open Questions / Future Work

Turn TFNP characterisations into propositional tautologies and
show lower bounds in related propositional proof systems for them.

Separate T2
2 from T3

2 with ∀Σb
1 sentences (relativised)

Analyse TFNP(T) for other theories.
Conjecture: All theories which admit a good ordinal analysis also
admit a characterisation of their provably total NP search
problems, similar to PA.
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Thanks!

Arnold Beckmann pTFNP 35 / 35


	The Heritage
	Bounded Arithmetic
	Total NP Search Problems
	Total NP Search Problems of Bounded Arithmetic
	bk-Polynomial Local Search
	Provably total NP search problem in Tk+12
	Local Improvement Principles

	Total NP Search Problems of Peano Arithmetic
	-bounded Local Search

	Conclusion

