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1 Extended Abstract

We report here on a novel framework of uniform realizability that unifies and generalizes various realiz-
ability interpretations of logic, particularly focussing on the treatment of atomic formulas and quantifiers.
Traditional realizability interpretations (such as Kleene’s number realizability [7]]) require explicit wit-
nesses for existential quantifiers. In contrast, newer approaches, such as in the first author’s uniform
Heyting arithmetic [2], Herbrand realizability of non-standard arithmetic [9]], or in the “classical” real-
izability of arithmetic [3} 4], (some) quantifiers, are treated uniformly. The proposed notion of uniform
realizability abstracts these differences, parametrising the interpretation by a given treatment of atomic
formulas, accounting for both classical and modern variants. The approach is illustrated using several
realizability interpretations of Heyting arithmetic, but in general we consider a realizability interpretation
of an arbitrary source theory S into a some suitable target theory T which has an extra sort for potentially
partial realizers with an application operation.

Definition 1.1 (Base interpretation of . (S) into .#(T)) A base interpretation of .Z(S) into £ (T) as-
sociates to each n-ary predicate symbol P of the language of S an (n+ m)-ary relation X <pa in the
language of T, between tuples x (arity n) and a (arity m, for some m). We read this as x is P-bounded by
a.

We think of the tuple a as the realizers or witness of P(x). Either x or a could be the empty (nullary)
tuple. We use the symbol () for the empty tuple and write a| to indicate that all elements of the tuple a
are defined. Application of a tuple f to a tuple a is defined as the tuple f(a) := f(a),..., fu.(a).

Definition 1.2 (Uniform realizability interpretation) Ler a base interpretation of £ (S) into £(T) be
given. For each formula A of S, possibly with free-variables, associate a formula a ur A (a uniformly
realises A) of T, by induction on A. For atomic formulas P(X) the interpretation is as in the base
interpretation: aur P(X) := X <lpa. So, a uniformly realizes P(X) if X is P-bounded by a. For composite
formulas the interpretation is defined as follows:

a,burAANB = (aurA)A(burB) aurdxA(x) = Ix(aurA(x))
furA— B := Va((aurA) — (f(a)l) A (f(a) urB)) aurvxA(x) = Vx(aurA(x)).

Definition 1.3 (Realizable sequents and formulas) For a fixed base interpretation of £ (S), we say
that a sequent T = A of S is realizable if for some A-term t[y] of T, with y as the only free-variables, we
have

(v4), (YurD) Fr (¢{y] 1) A (tY] urA).

A closed formula A is realizable if the sequent -1 A is realizable.
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2 Uniform Realizability Interpretations

Theorem 1.4 (Soundness) Given a base interpretation of £ (S), if all the non-logical axioms of S are
realizable then all the theorems of S are realizable.

Definition describes how we can extend a given base interpretation to a full interpretation. Con-
sider now a concrete source theory: Heyting (intuitionistic) arithmetic HA formulated with three predi-
cate symbols: falsity | (nullary), natural number N (unary), and equality = (binary). This means that in
HA we have three kinds of atomic formulas: L (falsity), N(n) (n is a number), and n = m (equality). We
can then look at particular choices of base interpretation for HA and show that the full interpretations
obtained coincide with (or are very close to) various well-known realizability interpretations of HA. We
carry this out for the following five interpretations:

Kleene’s number realizability [7]. This is based on the partial combinatory algebra %1, i.e. realizers
are natural numbers and application is partial recursive function application {e}(a). The target theory is
in this case HA (in the traditional formulation, i.e. without the predicate N) and the base interpretation
of the three predicate symbols of HA is

()<, () =1 x<Iyn = x=n (x,y)<_() = x=y.

Due to the particular interpretation of equality, realizability for the ‘qualified’ quantifiers 3"xA(x) :=
Jx (N(x) AA(x)) and VVxA (x) := Vx (N(x) — A(x)) is equivalent to the usual interpretation, i.e. writing
“arA” for this instance of the uniform realizability interpretation,

m,ar3IVxA(x) < arA(m) erVxA(x) < Vm({e}(m)| A{e}(m)rA(m).

Kreisel’s modified realizability [8]. Here, the realizers are Godel’s finite-type primitive recursive
functionals, formalised in Godel’s system .7. The base interpretation as the same as for Kleene real-
izability, but, since the primitive recursive functions are total, definedness statements a| can be omitted.

Classical realizability [3,4]. This is the same as modified realizability except that, to extract compu-
tational content from negated formulas, L is given a computational meaning. The interpretation can be
seen as a combination of modified realizability and Friedman and Dragalin A-translation [} 6]. The base
interpretation is

()<,a := P(a) x<dyn = x=n (x,y)<\_a := (x=y)VP(a).

If we write “a mr; A” for this instance of uniform realizability, we have amr; A < AV P(a) for every
atomic formula A.

Herbrand realizability [9]. In this case we have an extra predicate st, for standard natural numbers,
with base interpretation
xS = xe8

where S ranges over finite sets of (standard) natural numbers. Otherwise, the interpretation is as for
modified realizability, except that internal quantifiers are treated as unqualified quantifiers (uniformly).
Of major interest are the ‘external” quantifiers 3'xA (x) := Jx (st(x) AA(x)) and V*'xA(x) := Vx (st(x) —
A(x)) whose Herbrand realizability interpretations are

S,ahr FxA(x) & dneSahrA(n) fhrVoxA(x) < VSVn e SE(S) hrA(n)



U. Berger & P. Oliva 3

Aschieri-Berardi learning realizability [1]. In this interpretation the goal is to extract computational
content from proofs in HA plus the law of excluded middle for Z?—formulas. To this end, Godel’s
primitive recursive functionals are extended by a new base type of states, where a state is a finite set of
triples (P,n,m) such that m is a witness of the £{-formula 3xP(n,x). The base interpretation depends
now on a fixed state s:

()<L y = v(s)#s x<a = ofs) =x (x,y) <Ly = y(s)=s5s— (x=Y).

The intuition is that atomic formulas are realized by a state transformer Y as long as s is not a fixed point
of 7, and the property of being a natural number is realized by a a state-dependent number . Aschieri
and Berardi show that the realizer extracted from a proof of a Z?—formula is a state transformer that, when
iterated starting with the empty state, eventually reaches a fixed point of ¥ which then contains a correct
witness for the proven formula.
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