Applying Verified Z3 Proof Checking to Ladder
Logic Verification of Railway Interlockings

Harry Bryantl[0009*0008*9926*8678], Anton Setzerl[0000*0001*5322*6060],

Andrew Lawrence?, and Monika Seisenberger?[0000—0002—2226—386.X]

! Swansea University, SA1 8EN, Wales, UK
harry.bryant@swansea.ac.uk, a.g.setzer@swansea.ac.uk, and
m.seisenberger@swansea.ac.uk
2 Siemens Mobility Limited (UK)

andrew.lawrence@siemens.com

Abstract. Railway systems are safety critical and demand the highest
levels of assurance for their control software. Formal verification tools,
used alongside conventional testing, are essential for ensuring compliance
with stringent safety and regulatory standards. In this article, we present
a solution with the goal to be part of a future verification toolchain in-
volving Z3 SAT /SMT solving and to be certified at Safety Integrity Level
4 (SIL4). We demonstrate this via a verified and formally extracted SAT
proof checker in the context of Ladder Logic verification. Our approach
is tailored to the needs of our industrial partner, adaptable, and also
extendable to include further SMT theories. Our proof checker currently
works for Z3’s full propositional proof output, including Tseitin transfor-
mations. A checker for Z3 proofs of CNF formulas has been formalised
and verified in Rocq, with a certified OCaml implementation extracted
from the proof, whilst the full extendable framework including RUP in-
ferences and Tseitin transformation has been fully verified in Agda. Our
approach enables formal reasoning about Z3 outputs in both theorem
provers. Finally, we demonstrate the entire approach with a small case
study, and provide results on the scalability on an industrial level.

Keywords: Railway Verification - Verification - Proof Checking - Coq
- Rocq - Ladder Logic - Interlocking Systems - Z3 - SAT solving - SMT
solving - RUP - Tseitin transformation.

1 Introduction

Railway systems are among the most safety-critical infrastructures, where soft-
ware failures can have severe consequences. To ensure safety and regulatory
compliance, railway control systems, particularly interlockings, must be vali-
dated against formalised safety requirements, such as those defined by Network
Rail in the UK [1|. These are based on operational procedures, historical inci-
dents, and formal design rules. Validation typically involves weeks of testing, and
any failure requires costly redesign and retesting. To mitigate this, formal veri-
fication tools (see e.g. [2|-[4]) are increasingly used early in development. These
tools automatically check interlocking designs against formal safety properties,
helping to catch issues before physical testing. One such tool is the Ladder Logic

2 H. Bryant et al.

Verifier [5], which targets interlockings written in ladder logic 6], a graphical
language defined by the IEC 61131 standard [7]. The approach proves the un-
reachability of unsafe states by demonstrating the unsatisfiability of the negated
safety property. Many verification tools use Z3 [§|, a leading SMT solver, but its
internal complexity makes independent validation challenging. To support Safety
Integrity Level 4 (SIL4) certification, we adopt a proof-checking approach (e.g.
[9]) that verifies Z3’s unsatisfiability proofs rather than the solver itself. This
ensures interlockings proceed to industrial testing only after both verification
and proof validation are complete (Fig. .

Development

s Verification Assurance
esign &
Railway Interlocking T U .
Fails Fails Fails Standards
1 1 1

Verification Tool for Checking the Meeting Industry
Railway Designs Passes Proof Logs from Passes Testing Standards &
using Z3 Verification Tool Certificates

Verification

~

Standards

Design Rules

by Standards
Fig. 1: Proposed railway interlocking design methodology: The interlocking and
the safety properties are translated into SMTLIB [10] for analysis with Z3. If

successful, then our proof checker validates the proof log of unsatisfiability.
Only if both are successful, then industrial testing takes place.

We present a formally verified proof checker for Z3’s RUP (Reverse Unit
Propagation) proof format, introduced in 2022 [11]. The RUP checker, devel-
oped entirely in the Rocq proof assistant [12] and extracted to OCaml [13]-|15],
validates full propositional proofs, including Tseitin transformationﬂ However,
here only the RUP steps are fully verified. We also introduce a prototype full
checker for verifying both Tseitin and RUP steps as part of a broader, extensible
toolchain in Agda. This enables independent validation of solver outputs and
provides a certifiable link between SMT solving and formal proof checking. Our
approach integrates with Rocq/Agda, verifying the actual program rather than
just the algorithm. It is designed to be extensible and adaptable to future changes
in Z3’s proof format, ensuring long-term maintainability. Currently, it deals with
general propositional formulas, not just CNFs [17]. Developed in collaboration
with our industrial partner, who required the use of Z3 due to its certification
status, the checker has been evaluated on industrial-scale interlocking systems.
While our current focus is on discrete interlockings written in ladder logic, the
methodology is generalisable to modern railway systems such as ERTMS and
the verification of scheme plan data [4]. By independently validating solver out-
puts, our approach eliminates a key point of failure in automated verification
pipelines. It contributes directly to certification efforts and strengthens safety
assurance in railway software engineering.

3 The Agda implementation of the RUP checker has been presented in [16], the for-
malisation in Rocq and the treatment of Tseitin is new.

Applying Verified Z3 Proof Checking to Ladder Logic Verification

Related Work. SAT/SMT competitions nowadays require not just answers
but also independently checkable unsatisfiability proofs. This has driven exten-
sive research into proof checking and reconstruction across using different proof
formats and tools (see e.g. |18H29|)E| The currently fastest verified SAT Checker
is presented in [30] using LRAT, a modification of the DRAT format.

Recent work using cveb [31]-[33| provides a good framework for SMT proof
checking and also introduces a modular proof architecture intended to sup-
port integration with in SMTCoq, Isabelle and Lean. Feng et al. [34] provide
and approach to SMT proof checking SAT Modulo Monotonic Theories using
MONOSAT. Finally, the Lambdapi proof checker project [35] aims at provid-
ing a platform to exchange proofs between different interactive proof assistants.
While Z3 (RUP) outputs could be converted to other formats for checkingﬂ
this adds overhead and reduces clarity - undesirable in industrial settings where
simplicity and transparency are critical. This motivated our development of a
checker tailored to Z3’s native format.

Earlier work aimed at directly verifying SAT solvers (see, for instance, [36],
[37] for formalisations in Rocq and Isabelle).Versat |38] is verified solver that
includes CDCL, though their C implementation was only manually derived. In
[39], a provably correct DPLL prover has been automatically extracted from a
formal proof, and the extracted solver has been applied in Railway verification
case studies.

Contributions. The main contribution of this article is a verified proof
checker that supports SIL certification in railway verification (Fig. . It is ex-
tracted and applied to discrete interlocking systems, with support for full propo-
sitional logic via Tseitin transformation. This also serves as a proof-of-concept
for extending the approach to additional Z3 theoriesﬁ The main results are:

1. Demonstration of an extensible proof checker for validating Z3’s unsatisfia-
bility proofs, supporting SIL compliance in railway verification. We present
a tailored solution to fit the requirementsﬂ of our industrial partner.

2. Checker works for full Z3 propositional proofs, and is not restricted to for-
mulas in CNF (e.g. DIMACS format); i.e., the checker can process Z3 proofs
which include Tseitin steps for translating propositional formulas into CNF.

3. The checker itself is fully verified in Agda, and the RUP checker is verified
in Rocq. We provide a tool chain from SMT solver to Agda/Rocq, i.e. a
proof of correctness of our SMT proof checker, which also allows to integrate
theorems in Z3 into Agda and Z3 theorems in CNF into Rocq.

4 Interestingly we could not find an off the shelf solution to fit the format of our
industrial needs. Therefore we decided for own development to meet the requirements
by our partner, and be able to further extend it with the Z3 theories we need.

> We are aware that there is an internal RUP checker in Z3, and also the option to
produce a (longer) resolution proof (Z3’s old proof format).

6 73 theories are essential for verifying advanced railway systems such as ERTMS and
geographic data [4].

" Formats/tools used form part of an overarching certification framework, involving
Z3.

4 H. Bryant et al.

4. Small case study[ﬂ to demonstrate the entire tool qualification process.
5. A GitHub repository [40] containing the SAT checker code in Rocq, Agda,
and OCaml, as well as our case study.

2 73 Proofs of Unsatisfiability

The Z3 SMT solver [8] is widely used to verify whether an interlocking satisfies a
propositional safety property. It checks the satisfiability of the negated property
—p combined with the interlocking model (see James et al. [41]). If unsatis-
fiable, the original property ¢ holds, and Z3 can generate a proof log [42] for
independent checking. Otherwise, a counterexample is returned [43|-[46]. The
Ladder Logic Verifier uses Z3 first in inductive verification [41], [47], and falls
back to bounded model checking [48], [49] if needed. To illustrate, we model a
simple interlocking with a passing loop (Fig. [2)) [50], where a signal turns green
only if the point is correctly set and the opposing signal is red. The safety prop-
erty ensures that opposing signals are never green at the same time. We assert
its negation, (s0 A s1) V (s2 A s3), and Z3 returns unsat, confirming the de-
sign is safe. Z3’s proof log [42] shows the logical steps leading to unsatisfiability
(Fig. . The proof includes nine assumption steps, 18 Tseitin steps, and seven
RUP steps. Assumption introduces disjunctions, Tseitin encodes formulas into
CNF [17], |51]-53], and RUP derives new clauses.
5 oo |

oSN —
P1

n [o [o
Level Crossing S1 s3

Fig. 2: Simple railway interlocking with a passing loop

tseitin(Not (And(Not(s1), p0)), Not(s1)) [] [Not(s1l), Not(And(Not(sl), p0))]
tseitin(Not (And(Not(s1), p0)), p0) [1 [pO, Not(And(Not(sl), p0))]
tseitin(sl, Not(p0), And(Not(s1l), p0)) [1 [s1, Not(p0O), And(Not(sl), p0)]
assumption [] [Not(s0), And(Not(s1), p0)]

-- intermediate steps omitted --
rup [] [Not(And(Not(s2), Not(p1)))]
rup [1 [

Fig. 3: Snippet of Z3 proof log of unsatisfiability of the railway interlocking

The Tseitin transformation introduces fresh variables to represent subfor-
mulas, preserving equisatisfiability while enabling efficient SAT solving. In Z3,
however, these fresh variables are replaced directly by the original formulas, re-
sulting in tautological clauses. Our prototype checker validates Tseitin steps by
matching them against known tautological patterns including;:

8 Due to an NDA agreement in place we cannot demonstrate the process using a real
world interlocking, but we will report on the scalability of the approach.

Applying Verified Z3 Proof Checking to Ladder Logic Verification

— And:
e tseitin(Not(And(aq,...,a,)), a;) [1 [a;, Not(And(aq,...,a,))]
o tseitin(Neg(a;),..., Neg(a,), And(ay,...,a,)) []
[Neg(ay),..., Neg(ay,), And(ay,...,a,)]
— Not:
e tseitin(b, Not(b)) [1 [b, Not(Not(Neg(b)))]
— Or:
o tseitin(Neg(a;), Or(ay,...,a,)) [1 [Neg(a;), Or(aq,...,a,)]
e tseitin(aq,...,an, Not(0r(aj,...,a,))) [J
lay,...,a,, Not(Or(ay,...,a,))]

We implemented a prototype checker for these Tseitin steps in Agda [54],
a dependently typed language and proof assistant. The checker verifies that
each Tseitin clause matches a valid tautological pattern. Correctness is formally
proven by showing that all such clauses are tautologies, ensuring that the trans-
formation preserves equisatisfiability [55]. Together with our formally verified
RUP checker, these components form a complete SMT proof checker for propo-
sitional formulas. Future work will focus on translating the Tseitin checker to
Rocq and integrating it with the RUP checker for industrial deployment. Using
the correctness proofs of both the Tseitin and RUP checkers, we establish the
following key result: if the proof checker returns true, then the assumptions of
the Z3 proof entail its conclusions (Fig. 4). Furthermore, if in addition the as-
sumptions contain the empty clause, the proof confirms unsatisfiability (Fig. [5)).

correctnessZ3ProofCheck : (p : ZProof)
— atom (ZProofCheck p)
— EntailsListZCl (ZProof2Assumption p
(ZProof2ConclusionOpt p)

Fig. 4: If the checker is true, then the proof’s assumptions entail its conclusions

correctenessZ3ProofCheckUnsat : (p : ZProof)
— atom (ZProofCheckUnsat p)
— UnSat (ZProof2Assumption p)

Fig. 5: Proof of checker returning [| confirms the assumptions are unsatisfiable

3 Three Level Approach for a Verified RUP Checker

The basis of the new Z3 proof log format is Reverse Unit Propagation (RUP)
[56]-158]. In a RUP proof each inference, of the form rup [al, indicates that
the clause a has been derived and validated by showing that its negation and
a formula f leads to a contradiction via unit propagation. Ultimately, the proof
concludes with rup [], signifying that falsity has been reached directly, without
needing to derive any further clauses (success) or no further steps are possible
(failure). Clauses can be of length > 2, which we call long clauses, unit clauses,
which are clauses of length 1, or the empty clause. In RUP, a formula is a
conjunction of clauses written in CNF.

6 H. Bryant et al.

Success Failure SplitClauses
Bornula (Ic,uc, true) (Ic,[1.false)

Splitinto:
Long Clauses,
Unit Clauses,

Empty Clause Flag

Success
(lc,uc,true)

Failure
(Ic,[],false)

Continue
(lc,uc,b)

Empty Clause
Exists?

n = number of
unique variables

Unit Clause
Exists

Long Clauses: Unit Clauses:
Ifit contains I, omit it If =1 we omit it
If it contains -, remove If =1, derive [,
=l from the clause and record success

Combine both results into one SplitClauses }7

(a) Unit Propagation Checker Process (b) selectAndRunPropagator Process

Fig. 6: Overview of the RUP checker processes

Termination is guaranteed by structurally reducing variables at each step,
satisfying Rocq’s requirements. The implementation follows a loop that applies
one-step unit propagation (Fig. @: clauses containing [are removed, and those
with =l are reduced to ¢’ := ¢\ —l. Unit clauses are handled similarly - if I’ =,
it is omitted; if I’ = —l, the empty clause is derived; otherwise, it is retained
(Fig. . The checker and its formal correctness proofs were developed in Rocq
and are available on GitHub . We extracted the implementation to OCaml
using Rocq’s built-in mechanism 7, and built a parser for Z3 proof logs. To
prove correctness, we formalised the TreeProof datatype in Rocq, representing
unit resolution proofsEl
Inductive TreeProof : Type := | ass : nat — TreeProof

| ures : TreeProof — TreeProof — TreeProof.

Fig. 7: Example of Tree proof deriving a contradiction.

RUP is proven via unit propagation, which employs a series of unit resolution
steps. Here (ass n) denotes the assumption rule, deriving the nth assumption.
The assumptions are the original set of clauses prior to unit propagation. For
each unit resolution cut, we create (ures t1 t2) which denotes a TreeProof
of unit resolution from TreeProofs t1 and t2. For example, we derive that the
formula {a, b}, {—a,b} and {-b} is unsatisfiable. The RUP format first derives
{a}, by adding {—a} to the assumptions and deriving falsity using unit resolution

9 The term “tree proof” distinguishes this format from SMT and Rocq proofs.

Applying Verified Z3 Proof Checking to Ladder Logic Verification

(Fig. . An extended version of our Rocq code generates Tree Proofs, offering
additional confidence in the checker by providing a trace of the resolution cuts.

Clause Level (RUP Checker)
Unit Propagation Empty Clause derived
| Initial Clauses 2 Iterations 1 "by Unit Propagation
K X Ly

T 1
Correctness Correctness
Preserved Preserved

Proofs of Unit Propagation Proof of
Intial Clauses lterations Empty Clause

Tree Proof Level

Correctness

Correctness
Level

Fig.8: The three level architecture of the RUP proof checker

To prove soundness, we show that if the RUP checker returns true, then
there exists a valid TreeProof of the empty clause from a RUP step c’. We
implemented a unit resolution checker operating on long clauses and unit clauses.
Each clause-level operation is mirrored at the TreeProof level to produce a
matching resolution trace. We proved these operations preserve correctness with
respect to the original clauses (Fig. . A TreeProof t is correct if it derives a
clause c, from assumptions al, that matches the result on the clause level:
Definition CorrectProof (al : Assumption)(c : Clause)(t : TreeProof) : Prop :=

correctConclusion al t = Some c.

A TreeProof is valid if every use of (ass n) refers to a valid assumption (n
< length al), and each subproof of the form (ures t1 t2) where t2 is a unit
clause. This ensures that ¢’ entails falsity in all models. Since c’ is defined as
negate_clause c ++ a, its unsatisfiability implies the original assumptions a
entail the RUP clause c. Therefore, if [] can be derived from a, then a is unsatis-
fiable. By the definition of entailment [59], any model satisfying the assumptions
must also satisfy the conclusion. If the assumptions are true in a model, so is
the clause. As in the Agda prototype, we proved that if the RUP checker returns
true, the empty clause was derived, and the assumptions entail it. This implies
the correctness of RUP proofs and therefore of Z3 proofs of formulas in CNF:
Lemma RUP_Checker_correct : forall (a : Assumption) (c : Clause),

RUP_Checker a ¢ — true — entails a c.

Lemma RupProofcheckerUnSat : forall (pl : RupProof),
rupProofCheckerUnsat pl = true — UnSatFor (rupProof2Assumptions pl).

4 Applying the Z3 SAT Proof Checker

The checker consists of two components. The first is the reverse unit propagation
procedure extracted from Rocq, extended to support assumption and Tseitin
steps for SAT proof logs. Full checking of Tseitin steps will be added in future
work. The second is a parser that reads Z3 proof logs line by line, converting
each entry into the datatypes written in Rocq. The checker processes the proof
sequentially, confirming validity if all steps succeed, or reporting the first invalid
step encountered. The proof log from the example interlocking (Fig. [3) was suc-
cessfully validated. To evaluate scalability, we tested the checker on an industrial
interlocking with 75,000 propositional variables and 12,000 ladder logic rungs.

8 H. Bryant et al.

Two proof logs were generated using Inductive Verification (IV) and Bounded
Model Checking (BMC). The IV logs contained around 29,000 steps, while BMC
logs exceeded 500,000, reflecting BMC’s higher computational cost. All logs were
successfully validated (Table 7 with IV completing significantly quickeﬂ

Approach Proof Logs Validity Average Runtime
BMC 13 All Valid 7 hours, 49 minutes, 54 seconds
v 6 All Valid 2 minutes, 50 seconds

Table 1: RUP proof checker runtimes on the proof logs from running the
Ladder Logic Verifier on industrial interlockings

5 Conclusion

This work introduces a verified Z3 SAT proof checker to strengthen trust in rail-
way verification tools such as the Ladder Logic Verifier. A key component is a
formally verified Tseitin transformation, implemented in Agda, which converts
arbitrary formulas into CNF. Each transformation step is proven to be a tau-
tology, ensuring logical equivalence with the original formula. This framework
is designed for extensibility, allowing additional SMT proof rules to be incorpo-
rated and verified within the same formal setting. The RUP checker, developed in
Rocq, is an extracted verified program that validates Z3-generated RUP proofs.
A key strength of our approach is that the checker operates directly on proof
logs, avoiding inefficient translations into formats like resolution proofs. While
such conversions are possible (e.g., using legacy Z3 formats), they are impracti-
cal for large-scale systems. Our method eliminates this overhead by using unit
resolution trees as a formal foundation. Though not required during checking,
these trees are useful for small examples and debugging. The extracted OCaml
implementation supports full Z3 SAT traces and is designed for extensibility, en-
abling future support for theory-specific rules [42]. Developed with our industrial
partner, the checker integrates into safety-critical toolchains and supports real-
world SIL certification efforts. Our long-term goal is to automate and to verify
the encoding of interlocking system designs into SMT-LIB [10], enabling broad
safety property verification through a formally verified, extensible infrastructure.

Further steps will include: (1) Translating the Tseitin checker written in Agda
into Rocq and integrating it with the current extracted checker. (2) Extracting
the checker to C using CertiCoq [60], followed by performance testing and scala-
bility improvements. (3) Formalising the proof in Rocq’s safe core, leveraging its
infrastructure to ensure the core logic is verified within a minimal, trusted ker-
nel. (4) Exploring certified program extraction, evaluating existing frameworks
for full certification and identifying limitations. (5) Extending the checker to
full SMT by integrating provably correct rules like Farkas, and adding support
for more complex railway verification tasks. (6) Applying the checker in our
toolchain for verifying geographic scheme data [4], and developing larger case
studies to evaluate scalability and robustness.

10 Tests were run on a machine with 128 64-core processors at 2194.443 MHz.

Applying Verified Z3 Proof Checking to Ladder Logic Verification

References

(1]

2]

3]

4]

[5]

8]

Network Rail. Signalling Principles Handbook: Interlocking
Principles (Former Railway Group Standard GK/RT0060) -
NR/L2/SIG/30009/GKRT0060. Available at https : / / www . rssb .
co.uk/standards - catalogue/CatalogueItem/GKRT0060- Iss-4. Dec.
2020.

Anne Haxthausen and Jan Peleska. “Efficient Development and Verifica-
tion of Safe Railway Control Software”. In: Railways: Types, Design and
Safety Issues. Ed. by Cacilie Reinhardt and Klaus Shroeder. Nova Science
Publishers, 2013, pp. 127-148. 1SBN: 978-1-62417-139-0.

Phillip James, Andy Lawrence, Faron Moller, et al. “Verification of Solid
State Interlocking Programs”. In: Software Engineering and Formal Meth-
ods. Ed. by Steve Counsell and Manuel Nanez. Cham: Springer Interna-
tional Publishing, 2014, pp. 253-268. 1SBN: 978-3-319-05032-4.
Madhusree Banerjee, Victor Cai, Sunitha Lakshmanappa, et al. “A Tool-
Chain for the Verification of Geographic Scheme Data”. In: Reliability,
Safety, and Security of Railway Systems. Modelling, Analysis, Verifica-
tion, and Certification. Ed. by Birgit Milius, Simon Collart-Dutilleul, and
Thierry Lecomte. Cham: Springer Nature Switzerland, 2023, pp. 211-224.
ISBN: 978-3-031-43366-5. DOI: [10.1007/978-3-031-43366-5_13.

Simon Chadwick, Phillip James, Markus Roggenbach, et al. “Formal Meth-
ods for Industrial Interlocking Verification”. In: 2018 International Con-
ference on Intelligent Rail Transportation (ICIRT). 2018, pp. 1-5. DOL:
10.1109/ICIRT.2018.8641579.

Nicolas DeGuglielmo, Saurav Basnet, and Douglas Dow. “Introduce Lad-
der Logic and Programmable Logic Controller (PLC)”. In: Proceedings of
the 2020 IEEE Applied Systems and Engineering Environment for Emerg-
ing Nations Conference (ASEE-NE). Oct. 2020, pp. 1-5. DOI: 10.1109/
ASEENES1624.2020.9292646.

International Electrotechnical Commission. IEC 61131-3:2013 - Pro-
grammable controllers — Part 3: Programming languages. 3.0. Accessed:
2025-06-10. International Electrotechnical Commission, Feb. 2013. URL:
https://webstore.iec.ch/en/publication/4552.

Leonardo De Moura and Nikolaj Bjgrner. “Z3: An Efficient SMT solver”.
In: Proceedings of the Theory and Practice of Software, 14th Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Ed. by C. R. Ramakrishnan and Jakob Re-
hof. TACAS’08/ETAPS’08. Budapest, Hungary: Springer-Verlag, 2008,
pp. 337-340. 1SBN: 3540787992. URL: https://dl.acm.org/doi/abs/
10.5555/1792734.1792766.

Luis Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt, et al. “Efficient
Certified RAT Verification”. In: Automated Deduction — CADE 26. Ed.
by Leonardo de Moura. Cham: Springer International Publishing, 2017,
pp- 220-236. 1SBN: 978-3-319-63046-5. DOI: [10.1007/978-3-319-63046-
5_14.

https://www.rssb.co.uk/standards-catalogue/CatalogueItem/GKRT0060-Iss-4
https://www.rssb.co.uk/standards-catalogue/CatalogueItem/GKRT0060-Iss-4
https://doi.org/10.1007/978-3-031-43366-5_13
https://doi.org/10.1109/ICIRT.2018.8641579
https://doi.org/10.1109/ASEENE51624.2020.9292646
https://doi.org/10.1109/ASEENE51624.2020.9292646
https://webstore.iec.ch/en/publication/4552
https://dl.acm.org/doi/abs/10.5555/1792734.1792766
https://dl.acm.org/doi/abs/10.5555/1792734.1792766
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14

10
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

H. Bryant et al.

Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. https://smt-1ib.org. 2010.

Z3Prover contributors. Z3 Theorem Prover, Version 4.11.2. https://
github.com/Z3Prover/z3/releases/tag/z3-4.11.2, Introduced RUP-
based proof format. Accessed June 2025. Sept. 2022.

Rocq Development Team. Rocq. https://rocq-prover.org/. Accessed:
2025-05-09. 2025.

Pierre Letouzey. “Extraction in Coq, an Overview”. In: Logic and The-
ory of Algorithms: Jth Conference on Computability in Europe, CiE 2008,
Athens, Greece, June 15-20, 2008 Proceedings 4. Ed. by Arnold Beckmann,
Costas Dimitracopoulos, and Benedikt Léwe. June 2008, pp. 359-369. ISBN:
978-3-540-69407-6. DOI: [10.1007/978-3-540-69407-6_39.
Jean-Christophe Fillidtre and Pierre Letouzey. Extraction of programs in
OCaml and Haskell. https://coq.inria.fr/doc/V8.11.1/refman/
addendum/ extraction . html. From Coq 8.11.1 documentation, https :
//coq.inria.fr/doc/V8.11.1/refman/addendum/extraction.html.
2020. URL: https://coq.inria.fr/doc/V8.11.1/refman/addendum/
extraction.html.

Yannick Forster, Matthieu Sozeau, and Nicolas Tabareau. “Verified Extrac-
tion from Coq to OCaml”. In: Proceedings of the ACM on Programming
Languages 8. PLDI (June 2024), pp. 52-75. DOI: https://doi.org/10.
1145/3656379. URL: https://doi.org/10.1145/3656379.

Harry Bryant, Andrew Lawrence, Monika Seisenberger, et al. Verifying Z3
RUP proofs with the interactive theorem provers Coq/Rocq and Agda. To
appear in proceedings of Types 2025. June 2025.

Alan G. Hamilton. Logic for Mathematicians. eng. Rev. ed. Cambridge:
Cambridge University Press, 1988. 1SBN: 0521368650.

Sascha Bohme and Tjark Weber. “Fast LCF-Style Proof Reconstruction
for Z3”. In: Interactive Theorem Proving. Ed. by Matt Kaufmann and
Lawrence C. Paulson. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 179-194. 1SBN: 978-3-642-14052-5. DOIL: https://doi.org/10.1007/
978-3-642-14052-5_14.

Sascha Bohme. Proof Reconstruction for Z3 in Isabelle/HOL. Workshop
on Proof Exchange for Theorem Proving (PxTP). 2009. URL: https://
www2l.in.tum.de/ boehmes/proofrec.pdf.

Matti Jérvisalo, Marijn J. H. Heule, and Armin Biere. “Inprocessing
Rules”. In: Automated Reasoning. Ed. by Bernhard Gramlich, Dale Miller,
and Uli Sattler. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp- 355-370. ISBN: 978-3-642-31365-3. DOI: https://doi.org/10.1007/
978-3-642-31365-3_28.

Nathan Wetzler, Marijn Heule, and Warren Hunt. “DRAT-trim: Efficient
Checking and Trimming Using Expressive Clausal Proofs”. In: Interna-
tional Conference on Theory and Applications of Satisfiability Testing. July
2014, pp. 422-429. 1sBN: 978-3-319-09283-6. DOI: [10.1007/978-3-319-
09284-3_31.

https://smt-lib.org
https://github.com/Z3Prover/z3/releases/tag/z3-4.11.2
https://github.com/Z3Prover/z3/releases/tag/z3-4.11.2
https://rocq-prover.org/
https://doi.org/10.1007/978-3-540-69407-6_39
https://coq.inria.fr/doc/V8.11.1/refman/addendum/extraction.html
https://coq.inria.fr/doc/V8.11.1/refman/addendum/extraction.html
https://coq.inria.fr/doc/V8.11.1/refman/addendum/extraction.html
https://coq.inria.fr/doc/V8.11.1/refman/addendum/extraction.html
https://coq.inria.fr/doc/V8.11.1/refman/addendum/extraction.html
https://coq.inria.fr/doc/V8.11.1/refman/addendum/extraction.html
https://doi.org/https://doi.org/10.1145/3656379
https://doi.org/https://doi.org/10.1145/3656379
https://doi.org/10.1145/3656379
https://doi.org/https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/https://doi.org/10.1007/978-3-642-14052-5_14
https://www21.in.tum.de/~boehmes/proofrec.pdf
https://www21.in.tum.de/~boehmes/proofrec.pdf
https://doi.org/https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

Applying Verified Z3 Proof Checking to Ladder Logic Verification

Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt. “Mechani-
cal verification of SAT refutations with extended resolution”. In: Interac-
tive Theorem Proving. Ed. by Sandrine Blazy, Christine Paulin-Mohring,
and David Pichardie. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp- 229-244. 1SBN: 978-3-642-39634-2. DOI: https://doi.org/10.1007/
978-3-642-39634-2_18. URL: https://doi.org/10.1007/978-3-642-
39634-2_18.

Mathias Fleury and Hans-Jorg Schurr. “Reconstructing veriT proofs in
Isabelle/HOL”. In: Electronic Proceedings in Theoretical Computer Science
301 (Aug. 2019), pp. 36-50. 1SSN: 2075-2180. DOI: [10.4204/eptcs.301.6.
Adridn Rebola-Pardo. “Even Shorter Proofs Without New Variables”.
In: 26th International Conference on Theory and Applications of Sat-
isfiability Testing (SAT 2023). Ed. by Meena Mahajan and Friedrich
Slivovsky. Vol. 271. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 2023, 22:1-22:20. 1SBN: 978-3-95977-286-0. DOI: 10 . 4230 /
LIPIcs.SAT.2023.22. URL: https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.SAT.2023.22.

CMU Transparency Group. werified_rup: A Verified DRUP and DRAT
Proof Checker. https://github.com/cmu-transparency/verified_rup.
Accessed: 2025-06-26. 2023.

Luis Cruz-Filipe, Joao Marques-Silva, and Peter Schneider-Kamp. “Effi-
cient Certified Resolution Proof Checking”. In: Tools and Algorithms for
the Construction and Analysis of Systems. Ed. by Axel Legay and Tiziana
Margaria. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 118-
135. 1SBN: 978-3-662-54577-5.

SMTCoq Developers. SMTCoq: Communication between Coq and
SAT/SMT solvers. https://smtcoq.github.io/. Accessed: 2025-06-26.
2025.

Michael Armand, Germain Faure, Benjamin Grégoire, et al. “A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses”. In:
Certified Programs and Proofs. Ed. by Jean-Pierre Jouannaud and Zhong
Shao. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 135-150.
ISBN: 978-3-642-25379-9.

Mathias Fleury and Peter Lammich. “A More Pragmatic CDCL for IsaSAT
and Targetting LLVM (Short Paper)”. In: Automated Deduction — CADE
29. Ed. by Brigitte Pientka and Cesare Tinelli. Cham: Springer Nature
Switzerland, 2023, pp. 207-219. 1SBN: 978-3-031-38499-8.

Peter Lammich. “Fast and Verified UNSAT Certificate Checking”. In: Au-
tomated Reasoning. Ed. by Christoph Benzmiiller, Marijn J.H. Heule, and
Renate A. Schmidt. Cham: Springer Nature Switzerland, 2024, pp. 439—
457. 1SBN: 978-3-031-63498-7.

Haniel Barbosa, Clark Barrett, Martin Brain, et al. “cvch: A Versatile
and Industrial-Strength SMT Solver”. In: Tools and Algorithms for the
Construction and Analysis of Systems. Ed. by Dana Fisman and Grigore

11

https://doi.org/https://doi.org/10.1007/978-3-642-39634-2_18
https://doi.org/https://doi.org/10.1007/978-3-642-39634-2_18
https://doi.org/10.1007/978-3-642-39634-2_18
https://doi.org/10.1007/978-3-642-39634-2_18
https://doi.org/10.4204/eptcs.301.6
https://doi.org/10.4230/LIPIcs.SAT.2023.22
https://doi.org/10.4230/LIPIcs.SAT.2023.22
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2023.22
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2023.22
https://github.com/cmu-transparency/verified_rup
https://smtcoq.github.io/

12

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

H. Bryant et al.

Rosu. Cham: Springer International Publishing, 2022, pp. 415-442. ISBN:
978-3-030-99524-9.

Haniel Barbosa, Andrew Reynolds, Gereon Kremer, et al. “Flexible Proof
Production in an Industrial-Strength SMT Solver”. In: Automated Reason-
ing. Ed. by Jasmin Blanchette, Laura Kovacs, and Dirk Pattinson. Cham:
Springer International Publishing, 2022, pp. 15-35. 1SBN: 978-3-031-10769-
6.

Haniel Barbosa, Jasmin Christian Blanchette, Mathias Fleury, et al. “Bet-
ter SMT Proofs for Easier Reconstruction”. In: AITP 2019 - jth Conference
on Artificial Intelligence and Theorem Proving. Obergurgl, Austria, Apr.
2019. URL: https://hal.science/hal-02381819.

Nick Feng, Alan J. Hu, Sam Bayless, et al. DRAT Proofs of Unsatisfiability
for SAT Modulo Monotonic Theories. 2024. arXiv: 2401.10703 [cs.L0]k
URL: https://arxiv.org/abs/2401.10703.

Alessio Coltellacci, Gilles Dowek, and Stephan Merz. “Reconstruction of
SMT proofs with Lambdapi”. In: CEUR Workshop Proceedings. Ed. by
Giles Reger and Yoni Zohar. Vol. 3725. Montréal, Canada, July 2024,
pp- 13-23. URL: https://inria.hal.science/hal-04861898|

S. Lescuyer and S. Conchon. A Reflexive Formalization of a SAT Solver
in Coq. In Otmane Ait Mohamed, César Munoz, and Sofiéne Tahar: 21st
International Conference on Theorem Proving in Higher Order Logics. Pro-
ceedings of TPHOLOS. Technical Report (2008-1-Ait Mohamed), pages 65
- 76. Available from https://citeseerx.ist.psu.edu/document?repid=
repl & type =pdf &doi =971acf742e8a2d29a56c£46343320966b18f££86.
2008.

F. Mari¢ and P. Janic¢ié. “Formal Correctness Proof for DPLL Procedure”.
In: Informatica 21.1 (2010), pp. 57-78.

Duckki Oe, Aaron Stump, Corey Oliver, et al. “versat: A Verified Modern
SAT Solver”. In: Verification, Model Checking, and Abstract Interpreta-
tion. Ed. by Viktor Kuncak and Andrey Rybalchenko. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 363—-378. ISBN: 978-3-642-27940-9.
Ulrich Berger, Andrew Lawrence, Fredrik Nordvall Forsberg, et al. “Ex-
tracting verified decision procedures: DPLL and Resolution”. In: Logical
Methods in Computer Science Volume 11, Issue 1 (Mar. 2015). 1SSN: 1860-
5974. DOIL: [10.2168/1mcs-11(1:6) 2015 URL: http://dx.doi.org/10.
2168/LMCS-11(1:6)2015.

Harry Bryant, Andrew Lawrence, Monika Seisenberger, et al. Verifica-
tion of Z3 RUP Proofs in Cog-Rocq and Agda. https://github. com/
HarryBryant99/Verification-of-Z3-RUP-Proofs-in-Coq-Rocq-and-
Agda. Accessed: 2025-06-10. 2025.

Phillip James, Andy Lawrence, Faron Moller, et al. Verification of Solid
State Interlocking Programs. Vol. 8368. Springer-Verlag London, Mar.
2014, pp. 253-268.

73 Development Team. Inference logs and proofs. https://microsoft.
github. io/z3guide/programming/Proof’20Logs/. Retrieved 16 June

https://hal.science/hal-02381819
https://arxiv.org/abs/2401.10703
https://arxiv.org/abs/2401.10703
https://inria.hal.science/hal-04861898
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=971acf742e8a2d29a56cf46343320966b18fff86
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=971acf742e8a2d29a56cf46343320966b18fff86
https://doi.org/10.2168/lmcs-11(1:6)2015
http://dx.doi.org/10.2168/LMCS-11(1:6)2015
http://dx.doi.org/10.2168/LMCS-11(1:6)2015
https://github.com/HarryBryant99/Verification-of-Z3-RUP-Proofs-in-Coq-Rocq-and-Agda
https://github.com/HarryBryant99/Verification-of-Z3-RUP-Proofs-in-Coq-Rocq-and-Agda
https://github.com/HarryBryant99/Verification-of-Z3-RUP-Proofs-in-Coq-Rocq-and-Agda
https://microsoft.github.io/z3guide/programming/Proof%20Logs/
https://microsoft.github.io/z3guide/programming/Proof%20Logs/

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

Applying Verified Z3 Proof Checking to Ladder Logic Verification

2025 2025. URL: https://microsoft.github.io/z3guide/programming/
Proof’20Logs/.

Sahel Alouneh, Sa’Ed Abed, Mohammad Alshayeji, et al. “A comprehen-
sive study and analysis on SAT-solvers: advances, usages and achieve-
ments”. In: Artificial Intelligence Review 52 (Dec. 2019), pp. 2575-2601.
DOI: 110.1007/s10462-018-9628-0.

Markus Roggenbach, Antonio Cerone, Bernd-Holger Schlingloff, et al.
Formal Methods for Software Engineering Languages, Methods, Applica-
tion Domains. 1st ed. 1862-4499. Springer International Publishing, 2021,
pp- 192-207.

Julien Murzi and Lionel Shapiro. “Validity and Truth-Preservation”. In:
Unifying the Philosophy of Truth. Ed. by Theodora Achourioti, Henri Gali-
non, and José Martinez. Springer, 2015, pp. 431-459.

H. Paul Williams. “The Satisfiability Problem and Its Extensions”. In:
Logic and Integer Programming. Vol. 130. International Series in Oper-
ations Research & Management Science. Boston, MA: Springer, 2009,
pp. 105-144. po1: |10.1007/978-0-387-92280-5_4.

Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. “Checking Safety
Properties Using Induction and a SAT-Solver”. In: Formal Methods in
Computer-Aided Design (FMCAD 2000). Vol. 1954. Lecture Notes in Com-
puter Science. Springer, 2000, pp. 127-144. DOI: [10.1007/3-540-40922-
X_8l URL: https://1link. springer . com/chapter/10.1007/3-540-
40922-X_8.

Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, Jan. 2001. 1SBN: 978-0-262-03270-4.

Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing (Representation and Mind Series). The MIT Press, 2008. ISBN:
026202649X.

Wikipedia contributors. Romney Sands railway station. https://en.
wikipedia.org/wiki/Romney_Sands_railway_station. Accessed: 2025-
06-26. 2024.

Grigori S. Tseitin. “On the Complexity of Derivation in Propositional Cal-
culus”. In: Automation of Reasoning: 2: Classical Papers on Computa-
tional Logic 1967-1970. Ed. by Jorg H. Siekmann and Graham Wrightson.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, pp. 466—483. 1SBN:
978-3-642-81955-1. DOI: |[10.1007/978-3-642-81955-1_28. URL: https:
//doi.org/10.1007/978-3-642-81955-1_28.

Marius Minea. Conjunctive Normal Form: Tseitin Transform. H250: Hon-
ors Colloquium - Introduction to Computation. 2024. URL: https://
people.cs.umass.edu/ marius/class/h250/lec2.pdf.

Elias Kuiter, Sebastian Krieter, Chico Sundermann, et al. “Tseitin or not
Tseitin? The Impact of CNF Transformations on Feature-Model Analy-
ses”. In: Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering. ASE ’22. Rochester, MI, USA: Associa-
tion for Computing Machinery, 2023, pp. 1-13. 1SBN: 9781450394758. DOI:

13

https://microsoft.github.io/z3guide/programming/Proof%20Logs/
https://microsoft.github.io/z3guide/programming/Proof%20Logs/
https://doi.org/10.1007/s10462-018-9628-0
https://doi.org/10.1007/978-0-387-92280-5_4
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8
https://link.springer.com/chapter/10.1007/3-540-40922-X_8
https://link.springer.com/chapter/10.1007/3-540-40922-X_8
https://en.wikipedia.org/wiki/Romney_Sands_railway_station
https://en.wikipedia.org/wiki/Romney_Sands_railway_station
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://people.cs.umass.edu/~marius/class/h250/lec2.pdf
https://people.cs.umass.edu/~marius/class/h250/lec2.pdf

14

[54]

[55]

[56]

[57]

[58]

[59]

[60]

H. Bryant et al.

10.1145/3551349.3556938. URL: https://doi.org/10.1145/3551349.
3556938.

The Agda Team. What is Agda? https://agda.readthedocs.io/en/
latest/getting-started/what-is-agda.htmll Accessed: 2025-06-24.
2025.

Markus Krotzsch. Description Logic Rules. 10S Press, 2010. 1SBN: 978-1-
61499-342-1.

Allen van Gelder. Verifying RUP Proofs of Propositional Unsatisfiability:
Have Your Cake and FEat It Too. In Proceedings of 10th International
Symposium on Artificial Intelligence and Mathematics (ISAIM’08). 2008.
URL: https://users.soe.ucsc.edu/ avg/ProofChecker/Documents/
proofs-isaimO8-long.pdf.

Allen van Gelder. Verifying RUP Proofs of Propositional Unsatisfiability.
Slides of a talk given at ISAIM’08. 2008. URL: https://users.soe.ucsc.
edu/~avg/ProofChecker/Documents/proofs-isaim08-trans.pdf.
Eugene Goldberg and Yakov Novikov. “Verification of Proofs of Unsatisfia-
bility for CNF Formulas”. In: 2003 Design, Automation and Test in Europe
Conference and Ezhibition. Mar. 2003, pp. 886-891. DOI: [10.1109/DATE.
2003.1253718.

Pieter A. M. Seuren. “Logic and entailment”. In: The Logic of Language:
Language From Within Volume II. Oxford University Press, Oct. 2009,
85=87. 1SBN: 9780199559480. DOI:10.1093/acprof : 0s0/9780199559480.
003 . 0001. URL: https : / / doi . org / 10 . 1093 / acprof : oso /
9780199559480.003.0001.

Andrew Appel, Yannick Forster, Joomy Korkut, et al. CertiCoq. https://
certicoq.org/. Retrieved 16 June 2025 2025. URL: https://certicoq.
org/.

https://doi.org/10.1145/3551349.3556938
https://doi.org/10.1145/3551349.3556938
https://doi.org/10.1145/3551349.3556938
https://agda.readthedocs.io/en/latest/getting-started/what-is-agda.html
https://agda.readthedocs.io/en/latest/getting-started/what-is-agda.html
https://users.soe.ucsc.edu/~avg/ProofChecker/Documents/proofs-isaim08-long.pdf
https://users.soe.ucsc.edu/~avg/ProofChecker/Documents/proofs-isaim08-long.pdf
https://users.soe.ucsc.edu/~avg/ProofChecker/Documents/proofs-isaim08-trans.pdf
https://users.soe.ucsc.edu/~avg/ProofChecker/Documents/proofs-isaim08-trans.pdf
https://doi.org/10.1109/DATE.2003.1253718
https://doi.org/10.1109/DATE.2003.1253718
https://doi.org/10.1093/acprof:oso/9780199559480.003.0001
https://doi.org/10.1093/acprof:oso/9780199559480.003.0001
https://doi.org/10.1093/acprof:oso/9780199559480.003.0001
https://doi.org/10.1093/acprof:oso/9780199559480.003.0001
https://certicoq.org/
https://certicoq.org/
https://certicoq.org/
https://certicoq.org/

	Applying Verified Z3 Proof Checking to Ladder Logic Verification of Railway Interlockings

