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Most strings « readily give their own complexity: “my length minus something
small”. But some strings are complexity withholding—there is no short program
that takes x and outputs C(z).

These strings do not want to give their complexity; that is, there is no short
program which takes x and outputs C(z).

In other words, C'(C(x) | x) is large.

This paper reveals a surprising phenomenon: complexity withholding strings
create computational gaps. Even with vastly more computational resources than
should be needed, we cannot reach other strings of comparable complexity.

The key lies in the waiting times inherent in computations.

Before we continue, we note that there are strings « with large C(C(z)|z). In
fact, by Shen and Bauwens [3]': for each n there are strings of length n such
that

C(C(x)|x) >logn — O(1).

Recall that, since the length C(C(z)]|x)) of such a program for z of length n
is bounded from above by logn, see Li and Vitanyi [1], this is the best possible
bound.

For such strings z, x itself does not help at all in finding C(z).

Strings @ with large C'(C(z)|x) are rare but play a central role in the theory.
One example is in counterexamples to information symmetry of Kolmogorov
complexity; see Gacs [9]. Also see, for example, Section 2.8 in Li and Vitdnyi [1].

We will sometimes call strings for which C(C(z)|z) is not small, complexity
withholding.

1 Also see this paper for references to previous work on the function C(C(z) | z).



Now let o and § be left c.e. reals, (P,, Pg) a pair of programs generating them
from below, and «,, 5, their first n digits. It is obvious that an «, computes
a B, if the settling time of o,,—the time it takes for the approximations to the
c.e. real to settle on a,,—is longer than that of 3,.

That is, just wait for the growing approximation to «,, to settle and then read
off the approximation to 3,—which will be the actual 3,. This will follow if
the Kolmogorov complexity C(«,,) is sufficiently greater than C(3,,).

In this sense, for any two left c.e. reals, either «,, computes 3, or conversely,
since one must settle first.

How hard is it to compute the initial segment settling last from the one settling
first?

Our basic observation is that there exists a small computable band d? such
that, if «, is outside the band, C(ay,) > C(8,) + d, then it is often very
hard, requiring a lot of extra information. In fact, we require at least around
C(C(Bn) | Bn) extra bits. Since C(C(B,) | Bx) has no finite bound, and we only
want to lift the complexity by d, this is surprising.

We will show that this fact implies sharp results around Chaitin’s character-
isation of computability in terms of initial segment complexity. For example,
we will show that if C(a,) > C(n) + d for all n, then « is Turing-complete in
a very strong sense. In some sense, computable sequences are only some con-
stant d away from being Turing-complete. We will also look at Frank Stephan’s
relativisation of Chaitin’s result, in this light.

Further, and most surprisingly, we will show the general difficulty of computing
an initial segment «,, of complexity at least d more or less than 3,. It will be
comparably difficult even to compute any n-length string z2 of complexity at
least d less.

Since left c.e. reals are so-called limit computable, concepts of domination as in
Section 3.5 of Soare [11] all apply. We have not yet explored the deeper relations
with these concepts from pure computability theory.
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