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Our intuitive understanding of “dimension” is that the dimension of a set (say, a subset of Rn)
ought to quantify how that set occupies its ambient space. This is distinct from “measure”, which
quantifies merely how large the set is. This was formalized for the first time by Hausdorff, who
developed a notion of fractal dimension for subsets of Rn.

Definition 0.1. [1] Let (X, ρ) be a metric space, let E ⊆ X, and let δ > 0. Define

Hr
δ (E) = inf

{ ∞∑
i=1

diam(Ui)
r : E ⊆

∞⋃
i=1

Ui and diam(Ui) ≤ δ

}
,

i.e. the infimum is taken over all countable covers U = {U1, U2, . . . } of E by open sets of diameter
at most δ. The r-dimensional Hausdorff measure of E is

Hr(E) = lim
δ→0

Hr
δ (E).

The Hausdorff dimension of E is

dimH(E) = inf {r : Hr(E) = 0} = sup {r : Hr(E) = ∞} .

Hausdorff dimension is useful for studying sets of Lebesgue measure 0, and it is one of the
most well-studied aspects of geometric measure theory. Näıvely, one can effectivize this notion by
requiring that the covers be computable; that is, an effective listing of balls with rational centers
and rational radii.

Throughout the 21st century, various authors have contributed to the development of effective
notions of fractal dimension. The most helpful characterization was by J. Lutz and Mayordomo,
which was in terms of Kolmogorov complexity.

Definition 0.2. For r ∈ N and x ∈ Rn, the Kolmogorov complexity of x at precision r is

Kr(x) = min {K(q) : q ∈ Qn ∩B2−r(x)} .

Definition 0.3. [2] For x ∈ Rn, the effective dimension of x relative to an oracle A is

dimA(x) = lim inf
r→∞

KA
r (x)

r
.

The main breakthrough was the point-to-set principle of J. and N. Lutz, which states a direct
correspondence between the classical fractal dimension of a set and the effective dimension of its
points.
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Theorem 0.4. [3] For all E ⊆ Rn, we have

dimH(E) = min
A⊆N

sup
x∈E

dimA(x).

If A is such a minimizing oracle, we call A a Hausdorff oracle for E.

Several applications of this principle in geometric measure theory have been found, especially
for improving lower bounds on the dimension of certain classes of sets. This is noteworthy, as it
is uncommon for computability theory to have such immediate relevance to classical mathematics.
However, as computability theorists, we are also interested in the computational power of Hausdorff
oracles themselves.

In this talk, we will discuss results concerning this power. We consider the multivalued function
Γ − HOracle whose inputs are sets E in a pointclass Γ and which outputs a Hausdorff oracle for
E. We show that Γ − HOracle is Weihrauch equivalent to the problem Γ − HCover of finding a
Hausdorff cover of a set E, understood as a sequence of covers of E by basic open sets which witness
its Hausdorff dimension as in the classical definition. This equivalence simplifies the investigation
considerably.

We show that Hausdorff oracles (equivalently, Hausdorff covers) are, in general, exceptionally
weak. For Σ0

1 and Π0
1 subsets of Rn, Hausdorff oracles are computable outright, while Hausdorff

oracles for Σ0
2 sets are uniformly computable from a name for the set in question. On the other

hand, Π0
2 sets are non-computable but display strong cone-avoidance properties.

Theorem 0.5. Let Γ be a pointclass and E ∈ Γ(Rn), and let T ⊆ 2<N be a tree with no computable
paths. There is A ∈ Γ− HOracle(E) which does not compute any path on T .

Moreover, Hausdorff oracles for sets belonging to these higher pointclasses are very difficult to
compute.

Theorem 0.6. Π0
2 − HOracle ≰W UCωω .

We have the following as the best current upper bound:

Theorem 0.7. Π0
2 − HOracle ≤W Π1

1 − Cωω , i.e. choice on Π1
1 subsets of ωω.

From the perspective of the Weihrauch degrees, Hausdorff oracles are in a sense “off to the
side”. We also discuss briefly the computational difficulty of computing the dimension of sets of
various pointclasses.
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